Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.

Identifieur interne : 001271 ( Main/Exploration ); précédent : 001270; suivant : 001272

Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.

Auteurs : Cheol Woong Ha [Corée du Sud] ; Won-Ki Huh

Source :

RBID : pubmed:20947565

Descripteurs français

English descriptors

Abstract

The target of rapamycin (TOR) kinase is an evolutionarily conserved key regulator of eukaryotic cell growth and proliferation. Recently, it has been reported that inhibition of TOR signaling pathway can delay aging and extend lifespan in several eukaryotic organisms, but how lifespan extension is mediated by inhibition of TOR signaling is poorly understood. Here we report that rapamycin treatment and nitrogen starvation, both of which cause inactivation of TOR complex 1 (TORC1), lead to enhanced association of Sir2 with ribosomal DNA (rDNA) in Saccharomyces cerevisiae. TORC1 inhibition increases transcriptional silencing of RNA polymerase II-transcribed gene integrated at the rDNA locus and reduces homologous recombination between rDNA repeats that causes formation of toxic extrachromosomal rDNA circles. In addition, TORC1 inhibition induces deacetylation of histones at rDNA. We also found that Pnc1 and Net1 are required for enhancement of association of Sir2 with rDNA under TORC1 inhibition. Taken together, our findings suggest that inhibition of TORC1 signaling stabilizes the rDNA locus by enhancing association of Sir2 with rDNA, thereby leading to extension of replicative lifespan in S. cerevisiae.

DOI: 10.1093/nar/gkq895
PubMed: 20947565
PubMed Central: PMC3045593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Ha, Cheol Woong" sort="Ha, Cheol Woong" uniqKey="Ha C" first="Cheol Woong" last="Ha">Cheol Woong Ha</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Biological Sciences, Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Biological Sciences, Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huh, Won Ki" sort="Huh, Won Ki" uniqKey="Huh W" first="Won-Ki" last="Huh">Won-Ki Huh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20947565</idno>
<idno type="pmid">20947565</idno>
<idno type="doi">10.1093/nar/gkq895</idno>
<idno type="pmc">PMC3045593</idno>
<idno type="wicri:Area/Main/Corpus">001363</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001363</idno>
<idno type="wicri:Area/Main/Curation">001363</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001363</idno>
<idno type="wicri:Area/Main/Exploration">001363</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Ha, Cheol Woong" sort="Ha, Cheol Woong" uniqKey="Ha C" first="Cheol Woong" last="Ha">Cheol Woong Ha</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Biological Sciences, Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Biological Sciences, Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huh, Won Ki" sort="Huh, Won Ki" uniqKey="Huh W" first="Won-Ki" last="Huh">Won-Ki Huh</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Cell Cycle Proteins (physiology)</term>
<term>Cell Nucleolus (drug effects)</term>
<term>Cell Nucleolus (ultrastructure)</term>
<term>DNA, Ribosomal (metabolism)</term>
<term>Gene Silencing (MeSH)</term>
<term>Histones (metabolism)</term>
<term>Nicotinamidase (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Nuclear Proteins (physiology)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphoinositide-3 Kinase Inhibitors (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Sirtuin 2 (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ribosomique (métabolisme)</term>
<term>Acétylation (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Histone (métabolisme)</term>
<term>Nicotinamidase (métabolisme)</term>
<term>Nucléole (effets des médicaments et des substances chimiques)</term>
<term>Nucléole (ultrastructure)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Protéines SIR de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines du cycle cellulaire (physiologie)</term>
<term>Protéines nucléaires (physiologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sirtuine-2 (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Ribosomal</term>
<term>Histones</term>
<term>Nicotinamidase</term>
<term>Nitrogen</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae</term>
<term>Sirtuin 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Nuclear Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Nucleolus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Nucléole</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN ribosomique</term>
<term>Azote</term>
<term>Histone</term>
<term>Nicotinamidase</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines SIR de Saccharomyces cerevisiae</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sirtuine-2</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines nucléaires</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Cell Nucleolus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Gene Silencing</term>
<term>Phosphoinositide-3 Kinase Inhibitors</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Acétylation</term>
<term>Extinction de l'expression des gènes</term>
<term>Nucléole</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (TOR) kinase is an evolutionarily conserved key regulator of eukaryotic cell growth and proliferation. Recently, it has been reported that inhibition of TOR signaling pathway can delay aging and extend lifespan in several eukaryotic organisms, but how lifespan extension is mediated by inhibition of TOR signaling is poorly understood. Here we report that rapamycin treatment and nitrogen starvation, both of which cause inactivation of TOR complex 1 (TORC1), lead to enhanced association of Sir2 with ribosomal DNA (rDNA) in Saccharomyces cerevisiae. TORC1 inhibition increases transcriptional silencing of RNA polymerase II-transcribed gene integrated at the rDNA locus and reduces homologous recombination between rDNA repeats that causes formation of toxic extrachromosomal rDNA circles. In addition, TORC1 inhibition induces deacetylation of histones at rDNA. We also found that Pnc1 and Net1 are required for enhancement of association of Sir2 with rDNA under TORC1 inhibition. Taken together, our findings suggest that inhibition of TORC1 signaling stabilizes the rDNA locus by enhancing association of Sir2 with rDNA, thereby leading to extension of replicative lifespan in S. cerevisiae.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20947565</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>39</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>1336-50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkq895</ELocationID>
<Abstract>
<AbstractText>The target of rapamycin (TOR) kinase is an evolutionarily conserved key regulator of eukaryotic cell growth and proliferation. Recently, it has been reported that inhibition of TOR signaling pathway can delay aging and extend lifespan in several eukaryotic organisms, but how lifespan extension is mediated by inhibition of TOR signaling is poorly understood. Here we report that rapamycin treatment and nitrogen starvation, both of which cause inactivation of TOR complex 1 (TORC1), lead to enhanced association of Sir2 with ribosomal DNA (rDNA) in Saccharomyces cerevisiae. TORC1 inhibition increases transcriptional silencing of RNA polymerase II-transcribed gene integrated at the rDNA locus and reduces homologous recombination between rDNA repeats that causes formation of toxic extrachromosomal rDNA circles. In addition, TORC1 inhibition induces deacetylation of histones at rDNA. We also found that Pnc1 and Net1 are required for enhancement of association of Sir2 with rDNA under TORC1 inhibition. Taken together, our findings suggest that inhibition of TORC1 signaling stabilizes the rDNA locus by enhancing association of Sir2 with rDNA, thereby leading to extension of replicative lifespan in S. cerevisiae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ha</LastName>
<ForeName>Cheol Woong</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huh</LastName>
<ForeName>Won-Ki</ForeName>
<Initials>WK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C119300">Net1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000081082">Phosphoinositide-3 Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038281">Silent Information Regulator Proteins, Saccharomyces cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="C087778">SIR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="D056565">Sirtuin 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.19</RegistryNumber>
<NameOfSubstance UI="D009535">Nicotinamidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.19</RegistryNumber>
<NameOfSubstance UI="C474330">PNC1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002466" MajorTopicYN="N">Cell Nucleolus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009535" MajorTopicYN="N">Nicotinamidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000081082" MajorTopicYN="N">Phosphoinositide-3 Kinase Inhibitors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038281" MajorTopicYN="N">Silent Information Regulator Proteins, Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056565" MajorTopicYN="N">Sirtuin 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20947565</ArticleId>
<ArticleId IdType="pii">gkq895</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkq895</ArticleId>
<ArticleId IdType="pmc">PMC3045593</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1751-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Sep 1;17(17):2162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(7):2191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10877-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2007 Sep;24(9):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 16;133(4):627-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 17;22(22):6045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Feb;24(3):1301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 May 25;14(10):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15186745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2004 Apr;14(2):210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15196469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Aug 5;430(7000):686-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1991 Jan;127(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2016045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 May 1;20(9):1075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Oct 15;20(20):2887-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Feb 22;445(7130):922-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 13;282(15):10841-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 15;122(Pt 12):2089-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19494127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 11;459(7248):802-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Immunopharmacol. 1994 Sep;16(9):711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Apr 14;156(1):119-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Apr 15;11(4):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7785336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Oct 6;83(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7553860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Jan 15;11(2):241-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9009206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 1996 May;1(5):465-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9078378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 May 29;387(6632 Suppl):87-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9169871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Nov 3;16(21):6495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Dec 26;91(7):1033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Dec 15;12(24):3821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9869636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1999 Feb;9(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 16;97(2):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10219244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 16;97(2):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10219245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Apr;3(4):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10230397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Jun 24;260(1):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10381378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Oct 1;13(19):2570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Dec;7(6):624-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 3;279(49):50754-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 May 20;121(4):515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15907466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1861-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 17;403(6771):795-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10693811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6658-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10841563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Jul 5;273(2):793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 13;103(2):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11057898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Nov 30;278(3):685-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11095969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 8;410(6825):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Jan 15;20(1-2):197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Oct;42(1):215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11679080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2002 Feb;19(3):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11816029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2002 Feb;7(2):99-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11895475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;351:468-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):45099-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297502</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
<region>
<li>Région capitale de Séoul</li>
</region>
<settlement>
<li>Séoul</li>
</settlement>
<orgName>
<li>Université nationale de Séoul</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Huh, Won Ki" sort="Huh, Won Ki" uniqKey="Huh W" first="Won-Ki" last="Huh">Won-Ki Huh</name>
</noCountry>
<country name="Corée du Sud">
<region name="Région capitale de Séoul">
<name sortKey="Ha, Cheol Woong" sort="Ha, Cheol Woong" uniqKey="Ha C" first="Cheol Woong" last="Ha">Cheol Woong Ha</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001271 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001271 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20947565
   |texte=   Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20947565" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020